45 research outputs found

    Influence of Reoperations on Long-Term Quality of Life After Restrictive Procedures: A Prospective Study

    Get PDF
    Quality of life improves after bariatric surgery. However, long-term results and the influence of reoperations are not well known. A prospective quality of life assessment before, 1 and 7 years after laparoscopic adjustable gastric banding (LAGB) and vertical banded gastroplasty (VBG) was performed in order to determine the influence of reoperations during follow-up. One hundred patients were included in the study. Fifty patients underwent VBG and 50 LAGB. Patients completed the quality of life questionnaires prior to surgery and two times during follow-up. Health-related quality of life (HRQoL) questionnaires included the Nottingham Health Profile I and II and the Sickness Impact Profile 68. Follow-up was 84% with a mean duration of 84 months (7 years). During follow-up, 65% of VBG patients underwent conversion to Roux-en-Y gastric bypass while 44% of LAGB patients underwent a reoperation or conversion. One year after the procedure, nearly all quality-of-life parameters significantly improved. After 7 years, the Nottingham Health Profile (NHP)-I domain “physical ability”, the NHP-II and the SIP-68 domains “mobility control”, “social behavior”, and “mobility range” were still significantly improved in both groups. The domains “emotional reaction”, “social isolation” (NHP-I), and “emotional stability” (SIP-68) remained significantly improved in the VBG group while this was true for the domain “energy level” (NHP-I) in the LAGB group. Both the type of procedure and reoperations during follow-up were not of significant influence on the HRQoL results. Weight loss and decrease in comorbidities were the only significant factors influencing quality of life. Restrictive bariatric surgery improves quality of life. Although results are most impressive 1 year after surgery, the improvement remains significant after long-term follow-up. Postoperative quality of life is mainly dependent on weight loss and decrease in comorbidities and not on the type of procedure or surgical complications

    Co-expressed immune and metabolic genes in visceral and subcutaneous adipose tissue from severely obese individuals are associated with plasma HDL and glucose levels: a microarray study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Excessive accumulation of body fat, in particular in the visceral fat depot, is a major risk factor to develop a variety of diseases such as type 2 diabetes. The mechanisms underlying the increased risk of obese individuals to develop co-morbid diseases are largely unclear.</p> <p>We aimed to identify genes expressed in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) that are related to blood parameters involved in obesity co-morbidity, such as plasma lipid and glucose levels, and to compare gene expression between the fat depots.</p> <p>Methods</p> <p>Whole-transcriptome SAT and VAT gene expression levels were determined in 75 individuals with a BMI >35 kg/m<sup>2</sup>. Modules of co-expressed genes likely to be functionally related were identified and correlated with BMI, plasma levels of glucose, insulin, HbA<sub>1c</sub>, triglycerides, non-esterified fatty acids, ALAT, ASAT, C-reactive protein, and LDL- and HDL cholesterol.</p> <p>Results</p> <p>Of the approximately 70 modules identified in SAT and VAT, three SAT modules were inversely associated with plasma HDL-cholesterol levels, and a fourth module was inversely associated with both plasma glucose and plasma triglyceride levels (p < 5.33 × 10<sup>-5</sup>). These modules were markedly enriched in immune and metabolic genes. In VAT, one module was associated with both BMI and insulin, and another with plasma glucose (p < 4.64 × 10<sup>-5</sup>). This module was also enriched in inflammatory genes and showed a marked overlap in gene content with the SAT modules related to HDL. Several genes differentially expressed in SAT and VAT were identified.</p> <p>Conclusions</p> <p>In obese subjects, groups of co-expressed genes were identified that correlated with lipid and glucose metabolism parameters; they were enriched with immune genes. A number of genes were identified of which the expression in SAT correlated with plasma HDL cholesterol, while their expression in VAT correlated with plasma glucose. This underlines both the singular importance of these genes for lipid and glucose metabolism and the specific roles of these two fat depots in this respect.</p

    Gender Dimorphism in Skeletal Muscle Leptin Receptors, Serum Leptin and Insulin Sensitivity

    Get PDF
    To determine if there is a gender dimorphism in the expression of leptin receptors (OB-R170, OB-R128 and OB-R98) and the protein suppressor of cytokine signaling 3 (SOCS3) in human skeletal muscle, the protein expression of OB-R, perilipin A, SOCS3 and alpha-tubulin was assessed by Western blot in muscle biopsies obtained from the m. vastus lateralis in thirty-four men (age = 27.1±6.8 yr) and thirty-three women (age = 26.7±6.7 yr). Basal serum insulin concentration and HOMA were similar in both genders. Serum leptin concentration was 3.4 times higher in women compared to men (P<0.05) and this difference remained significant after accounting for the differences in percentage of body fat or soluble leptin receptor. OB-R protein was 41% (OB-R170, P<0.05) and 163% (OB-R128, P<0.05) greater in women than men. There was no relationship between OB-R expression and the serum concentrations of leptin or 17β-estradiol. In men, muscle OB-R128 protein was inversely related to serum free testosterone. In women, OB-R98 and OB-R128 were inversely related to total serum testosterone concentration, and OB-R128 to serum free testosterone concentration. SOCS3 protein expression was similar in men and women and was not related to OB-R. In women, there was an inverse relationship between the logarithm of free testosterone and SCOS3 protein content in skeletal muscle (r = −0.46, P<0.05). In summary, there is a gender dimorphism in skeletal muscle leptin receptors expression, which can be partly explained by the influence of testosterone. SOCS3 expression in skeletal muscle is not up-regulated in women, despite very high serum leptin concentrations compared to men. The circulating form of the leptin receptor can not be used as a surrogate measure of the amount of leptin receptors expressed in skeletal muscles

    Novel Regulatory Mechanisms for Generation of the Soluble Leptin Receptor: Implications for Leptin Action

    Get PDF
    The adipokine leptin realizes signal transduction via four different membrane-anchored leptin receptor (Ob-R) isoforms in humans. However, the amount of functionally active Ob-R is affected by constitutive shedding of the extracellular domain via a so far unknown mechanism. The product of the cleavage process the so-called soluble leptin receptor (sOb-R) is the main binding protein for leptin in human blood and modulates its bioavailability. sOb-R levels are differentially regulated in metabolic disorders like type 1 diabetes mellitus or obesity and can, therefore, enhance or reduce leptin sensitivity.To describe mechanisms of Ob-R cleavage and to investigate the functional significance of differential sOb-R levels we established a model of HEK293 cells transiently transfected with different human Ob-R isoforms. Using siRNA knockdown experiments we identified ADAM10 (A Disintegrin And Metalloproteinase 10) as a major protease for constitutive and activated Ob-R cleavage. Additionally, the induction of lipotoxicity and apoptosis led to enhanced shedding shown by increased levels of the soluble leptin receptor (sOb-R) in cell supernatants. Conversely, high leptin concentrations and ER stress reduced sOb-R levels. Decreased amounts of sOb-R due to ER stress were accompanied by impaired leptin signaling and reduced leptin binding.Lipotoxicity and apoptosis increased Ob-R cleavage via ADAM10-dependent mechanisms. In contrast high leptin levels and ER stress led to reduced sOb-R levels. While increased sOb-R concentrations seem to directly block leptin action, reduced amounts of sOb-R may reflect decreased membrane expression of Ob-R. These findings could explain changes of leptin sensitivity which are associated with variations of serum sOb-R levels in metabolic diseases

    Amyloid Precursor Protein and Proinflammatory Changes Are Regulated in Brain and Adipose Tissue in a Murine Model of High Fat Diet-Induced Obesity

    Get PDF
    Background: Middle age obesity is recognized as a risk factor for Alzheimer’s disease (AD) although a mechanistic linkage remains unclear. Based upon the fact that obese adipose tissue and AD brains are both areas of proinflammatory change, a possible common event is chronic inflammation. Since an autosomal dominant form of AD is associated with mutations in the gene coding for the ubiquitously expressed transmembrane protein, amyloid precursor protein (APP) and recent evidence demonstrates increased APP levels in adipose tissue during obesity it is feasible that APP serves some function in both disease conditions. Methodology/Principal Findings: To determine whether diet-induced obesity produced proinflammatory changes and altered APP expression in brain versus adipose tissue, 6 week old C57BL6/J mice were maintained on a control or high fat diet for 22 weeks. Protein levels and cell-specific APP expression along with markers of inflammation and immune cell activation were compared between hippocampus, abdominal subcutaneous fat and visceral pericardial fat. APP stimulation-dependent changes in macrophage and adipocyte culture phenotype were examined for comparison to the in vivo changes. Conclusions/Significance: Adipose tissue and brain from high fat diet fed animals demonstrated increased TNF-a and microglial and macrophage activation. Both brains and adipose tissue also had elevated APP levels localizing to neurons and macrophage/adipocytes, respectively. APP agonist antibody stimulation of macrophage cultures increased specific cytokin

    Serum amyloid A: production by human white adipocyte and regulation by obesity and nutrition

    Get PDF
    AIMS/HYPOTHESIS: The acute-phase proteins, serum amyloid As (SAA), are precursors of amyloid A, involved in the pathogenesis of AA amyloidosis. This work started with the characterisation of systemic AA amyloidosis concurrent with SAA overexpression in the subcutaneous white adipose tissue (sWAT) of an obese patient with a leptin receptor deficiency. In the present study a series of histopathological, cellular and gene expression studies was performed to assess the importance of SAA in common obesity and its possible production by mature adipocytes. MATERIALS AND METHODS: Gene expression profiling was performed in the sWAT of two extremely obese patients with a leptin receptor deficiency. Levels of the mRNAs of the different SAA isoforms were quantified in sWAT cellular fractions from lean subjects and from obese subjects before and after a very-low-calorie diet. These values were subsequently compared with serum levels of SAA in these individuals. In addition, histopathological analyses of sWAT were performed in lean and obese subjects. RESULTS: In sWAT, the expression of SAA is more than 20-fold higher in mature adipocytes than in the cells of the stroma vascular fraction (p<0.01). Levels of SAA mRNA expression and circulating levels of the protein are sixfold (p<0.001) and 3.5-fold (p<0.01) higher in obese subjects than in lean subjects, respectively. In lean subjects, 5% of adipocytes are immunoreactive for SAA, whereas the corresponding value is greater than 20% in obese subjects. Caloric restriction results in decreases of 45-75% in levels of the transcripts for the SAA isoforms and in circulating levels of the protein. CONCLUSIONS/INTERPRETATION: The results of the present study indicate that SAA is expressed by sWAT, and its production at this site is regulated by nutritional status. If amyloidosis is seen in the context of obesity, it is possible that production of SAA by adipocytes could be a contributory factor
    corecore